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Digital Process Twin Workflows
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Preliminary evaluation of (1) power flow forecaster on a benchmark LV grid Processing large amounts of grid monitoring data and detecting data different from
and (2) load forecasting with deep learning (DL) zero-shot inference. the bulk is a first step towards identifying potential issues. Unsupervised learning
can support DSO analysts to filter data and identify periods where disturbances

occur. Steps:
(1) Day-ahead power flow forecasting — 4

forecast . " " " I
in terms of error propagation and | Daiy e el o 1. Remove mean, scale to unit variance, remove linear correlations.
computation time. ol k0328 0327 2. Singular value decomposition to reduce dataset dimensions (15 components
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kV transformer and 58 LV buses with 111 £,/ 3. Density based clustering (two hyperparameters: distance to neighbour
loads (2.0 to 31.0 kW) \\N LM 0 threshold, and number of samples around a cluster centre).
*Simbench includes emulated smart 03 | et v AW A
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meter.and g_eneratlon data by means of Principal components ['Inverted Component [%]', 'Homopolar Component [%]']
genenc prOﬂIeS MSE of each timeosizigri?zrosilr%gge&fg(r)ecast issue (24h) 10- o
Dummy forecast is created using local 3-
||near reg reSS|OnS le—5 Voltage magnitude MSE Max current MSE K 0.5 - :
*Scenario emulated is that time series i | 2 ,
forecasts of load are issued every day at 3 0.00025 - . ' "['Voltage L1 min [V]', ‘Voltage L2 min [V]', ‘Voltage L3 min [V]']
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*A file-based interface between the time " D 01 500 |
. ] 0.00010 -
series forecast module and the power 1 '\MLN i MM 1 L
flow solver is used via an S3 bucket 0 A~V A . 000000 { L e — 150 -
*Simbench data corresponding to the T " “rimestepsasmninenal =21 - | ['Harmonics L1 max [%]', '"Harmonics L2 max [%]', 'Harmonics L3 max [%)']
eneric profiles were mapped and 6 -4 - : : ' ' : '
g P . pp Top left plot shows active power from Load 4 and a dummy forecast issued every 24 hours. ° 4 2 0 zcz 4 ° 8 10
scaled accordlng to the grld topology, Histogram shows root-mean-square error (RMSE) calculated for every day during a month for 40 -
' ' H : each of the 111 loads in this reference grid, mean +/- standard deviation values are shown in each A data set with 58 quantities that describe voltage, power, current,
reSUItmg In active (P) and reactive power for All loads, and for Load 4. The bottom plots illustrate the error between the power flow solutions harmonics, and grid frequency; 10-min values from October 2018 to : ®
(Q) load profiles calculated with the Simbench data and those calculated with the forecast. December 2019 recorded fgxrfrgegrédp;nrgpelgrgﬁvgvodgmgteegsg?"')eo?n?; the LY 207
Power flow is calculated using plane are detected, one corresponds to a normal behaviour, and the 12-08 06 12-08 12 12-08 18 120900  12-09 06 12-09 12 12-09 18 12-10 00
. . other to odd values that might represent an anomaly. Three points are
pandapower tool with Simbench data as highlighted and mapped to the original time series, where the distortion
input and with forecast data as input to in the voltage is observed.

analyse error propagation

(2) Load forecasting comparison of dummy, naive (e.g., average of past data), and DL forecast for P S u m m a ry a n d O Utl OO k

and Q of load 4 over a period of one month. The DL model is a pretrained Text-to-Text transformer, TS

architecture with 8M parameters, used as a zero-shot inference tool, without fine tuning. For both * This work gives an overview of the Operatlonal planning framework along with
models the input is data of the three previous days. The DL forecast has a mean RMSE lower that the examples of data analytics developed in the Al-assisted decision support for
naive forecast, its standard deviation is significantly larger. Both the naive and the DL forecast can be operational planning in distribution systems (A|SOP) project funded by
easily improved, and more extensive comparisons will be performed. ERA-NET JPP SES program
__ e * In this framework a Digital Process Twin (DPT) with Single Source of Truth
P . || gxmicionntanial (SSoT) facilitates data management from loT sensors and model outputs;
+ 0.386 +0.771 +1.153 — R . . . . .
S s workflows define analytics and forecasting tasks to support operator decisions.
Q [kVAr] 0.398 0.737 0.692 a 41 . . . .
g * Next steps: apply workflows to data from two sites in Switzerland and integrate
oz oosopeny cemvoe oo risk metrics into the design of dynamic tariffs to facilitate the evaluation of

different tariff schemes.
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